
MODERN OPTIMISATION TECHNIQUES 
IN ACTUARIAL MODELLING

PIOTR GODLEWSKI



CACHE STRUCTURE

• Only data stored in CPU registers can be 
accessed directly by CPU

• Data needs to be transferred from main memory 
or drive to registers through layers of caches

• Caches closer to registers are smaller, 
but have lower latency



CACHE LATENCY

• Data transfers between main memory and cache 
might slow down calculations by orders 
of magnitude

• Data is transferred between caches and main 
memory in blocks (cache line), usually of
64-byte size

• Cache-friendly code should be based on 
the principle of locality

• Contiguous data structures should be preferred,
e.g. std::vector in C++ or numpy.array in Python



PREFETCHING

• Modern CPUs can recognise memory access patterns and copy data to L1 cache and registers 
before this data is requested by a program

• Prefetching is only possible when memory is accessed sequentially

• Contiguous data structures make prefetching more effective



BRANCH PREDICTION

• Modern CPUs try to guess which branch of an if-statement is going to be executed before the condition is 
evaluated

• The predicted branch is speculatively executed while the if-statement condition is being evaluated

• If the guess was wrong, the executed instructions are discarded and the correct branch is executed, causing a delay



ADVANCED VECTOR EXTENSIONS



ADVANCED VECTOR EXTENSIONS

• Modern CPUs do floating-point arithmetic on 256-bit vector registers

• Each vector register can store up to 4 double precision or 8 single precision values

• AVX instructions are performed on all values stored in a vector register

• AVX can speed up calculations by up to 4 times for double precision and by up to 8 times for single precision

• Most CPUs support AVX instructions on integers (AVX2) and some have 512-bit registers (AVX512)



LOOPING ORDER
Inner loop over outer dimension Inner loop over inner dimension

Benchmark (num_mps=1'000'000, t_max=600):



BATCHED CALCULATIONS
Inner loop over outer dimension Inner loop over inner dimension

Batched inner loop over inner dimensionBenchmark (num_lfs=100, num_sims=1'000'000):



PROGRAMMING LANGUAGE TYPES

• Compiled

• Interpreted

• Just-In-Time (JIT) aka Virtual Machine (VM)

Ranking programming languages by energy efficiency, Rui Pereira et al. (2021)



PROGRAMMING LANGUAGE TYPES

Example: C, C++, Rust

Pros:

• Highly optimised

• Full control over hardware

Cons:

• Coding from scratch

• Code needs to be recompiled after every change

Example: Python, R, VBA, MATLAB

Pros:

• Compact and easy to understand

• Various libraries/packages available

• Code can be modified at runtime

Cons:

• Slow

• High memory usage

• Impossible to access some hardware features 
(AVX, multithreading in R or VBA)

Compiled Interpreted



OPTIMISATION FEATURES

• Code manipulation

• Profile-guided optimisation

• Auto-vectorisation

• Inlining

• Fast floating-point arithmetic

• Compile-time evaluation (C++)

• Metaprogramming (C++)



AUTO-VECTORISATION
AVX intrinsics Auto-vectorisation

Benchmark (n=1000):



AUTO-VECTORISATION

Modern compilers can auto-vectorise code quite efficiently. However, in some cases implicit vectorisation 
cannot be performed, including:

• Noncontiguous data structures

• Nonsequential data access patterns

• Code branches (e.g. if statements)

• Data dependency (aliasing)

• Data alignment



FUNCTION INLINING

• Calling a function is a relatively costly process, especially in interpreted languages

• For example, a function call in Python is 2-3 orders of magnitude slower than in C++

• Compilers are able to significantly optimise performance by inlining small functions, essentially 
"copy-pasting" function's code in-place

• Modern compilers are extremely efficient in determining whether to inline a function or not

• Not every function should be inlined!



FAST FLOATING-POINT ARITHMETIC

• Floating-point arithmetic is not exact due to rounding errors

• The most common convention for FP calculations is IEEE-754

• Fast FP arithmetic allows compiler to reorder, combine or simplify calculations 
under assumptions of perfect arithmetic

• This might result in a different output, but not necessarily worse

Benchmark (size=100'000'000):



COMPILE-TIME EVALUATION

• If data required to perform computation is 
available to compiler, it can evaluate it in advance 
of a model run

• Thanks to compile-time evaluation, costly function 
calls are omitted, since the result has already been 
computed and stored in memory

• This is most useful when function would be called 
many times, e.g. per model point

• Compile-time evaluation makes auto-vectorisation 
easier

• In C++20 standard most of arithmetic functions 
became constexpr



METAPROGRAMMING
Function Template specialisation



ACTUARIAL MODELLING

• Actuarial models (cash flow, capital, ESG) are most often memory bound

• Cache-friendly code is the key to high performance

• Models with vectorised calculations are faster due to prefetching and branch prediction

• They can be further accelerated with AVX

• Compiled languages offer superior performance in both run time and memory usage



MODERN OPTIMISATION TECHNIQUES IN 
ACTUARIAL MODELLING
Piotr Godlewski

piotrgodlewski391@gmail.com

linkedin.com/in/piotr-godlewski/


	Slajd 1: Modern Optimisation Techniques in Actuarial Modelling
	Slajd 2: Cache Structure
	Slajd 3: Cache Latency
	Slajd 4: Prefetching
	Slajd 5: Branch Prediction
	Slajd 6: Advanced Vector Extensions
	Slajd 7: Advanced Vector Extensions
	Slajd 8: Looping Order
	Slajd 9: Batched Calculations
	Slajd 10: Programming Language Types
	Slajd 11: Programming Language Types
	Slajd 12: Optimisation Features
	Slajd 13: Auto-Vectorisation
	Slajd 14: Auto-Vectorisation
	Slajd 15: Function Inlining
	Slajd 16: Fast Floating-Point Arithmetic
	Slajd 17: Compile-Time Evaluation
	Slajd 18: Metaprogramming
	Slajd 19: Actuarial Modelling
	Slajd 20: Modern Optimisation Techniques in Actuarial Modelling

